AI真正的主戰場在硬體
AI真正的主戰場在硬體

別誤會了,我熱愛軟體。

我只是覺得這一波已經接近尾聲——如果不是已經過了尾聲——的精實新創浪潮下,太多投資人和創業家口中念念有詞的、關於軟體新創的論點不過是一堆狗屁。

比這些關於軟體新創的狗屁更狗屁的,是毫無根據就把硬體投資視為過時的、難以產生回報的論點,即使面對了市場上公開資訊的反駁。

別誤會了,如果可以,我也想投資一個SaaS的商用軟體新創,看著他們用很少的資金做出MVP(Minimum Viable Product),然後用社群草根的方式取得眾多使用者,每週根據使用者的回饋以及蒐集到的數據改善並更新軟體,然後針對進階使用者每月收取費用,量測並改善耗損率,然後達成千萬使用戶、超過百分之百的年成長率以及九成以上的用戶留存率,取得最少五千萬美元的每年重複營收,然後以五億美元的價格出售給Salesforce這樣令人景仰的SaaS企業,並將創業家和Marc Benioff這樣令人景仰的創辦人簽約後握手的照片裱框,放在自己的桌子上朝外給所有進到自己辦公室的年輕創業家看。

等等,去他的投資!我乾脆自己創辦這樣的公司好了!

事實上,在動態均衡的商業世界裡,沒有任何一種商業模式或者產業具有永久的投資優勢。

興起於2004年的精實新創風潮為我們的世界帶來了臉書、推特、Youtube、Dropbox、Uber和Airbnb等日常生活的應用軟體,也連帶讓MVP、iteration和pivot變成熱門單字,更催生了一整個世代非工程背景也未曾創過業的新型風險資本家,他們在各大小新創活動中轉來轉去,以看似老練的口吻問著創業家,「你的每月活躍用戶量是多少?」

但在這樣低的創業和投資進入障礙的世界裡,伴隨而來的必然是激烈的全面競爭,不管是創業家彼此,或者風險資本家之間。這些競爭也許會反映在燒錢進行同業競爭上,也許反映在平均估值的不斷推升上。最終來說,產業抵達了動態均衡,人們也終於開始發現軟體精實新創並沒有比較容易創業,投資起來也沒有比較好賺。

似乎是歷史重演地,我們看到人工智慧的投資趨勢最近也反映出這樣的潮流反轉。

和精實新創經歷的一樣,我們不難想像過去兩年間滿手是錢的風險資本家們,乘著「人工智慧」、「機器學習」和「深度學習」的關鍵字浪潮,追逐著各種宣稱使用人工智慧、機器學習或深度學習來取代人類世界中某些由勞工負責的工作的新創。

而就跟精實新創投資一樣的,事實上任何有一點社會經驗的人都可以想像出任何一種「用AI取代人類」的新創應用。唯一不一樣的地方在於,要開發這樣的應用需要的不只是能夠寫邏輯程式代碼的coder,還需要懂得機器學習演算法的數學專家。

如果無法取得訓練模型用的資料,也是白搭

不夠格的投資者們,就像他們在精實新創浪潮中追著浪尾投資已經有數十家先行者的新創類型一樣,忙不迭地把錢灌進「能夠描繪某種AI使用情境」的軟體新創。稍微謹慎一點的投資者們,找來了從事相關研究的教授或者博士班學生來幫忙作盡職調查,以求避開明顯的騙子。

但不管是哪一種,打著「用AI取代人類」嘴砲的軟體新創仍然面臨兩個自己無法解決的挑戰。

其中一個就是我常常講的,就算是絕頂聰明的數學家或者資料科學家,如果無法取得訓練模型用的資料,那也是白搭,這也是為什麼在Hardware Club我們選擇投資提供從感測器到雲端機器學習完整系統的Full-stack AI新創。

另ㄧ個純軟體AI新創面臨的挑戰,則是在創業或者投資初期常常被忽略的硬體計算能力的限制。

常被忽略的硬體計算能力的限制

我在〈軟體吃掉世界,AI吃掉軟體〉一文中就曾經提到過,精實新創誕生的背景是晶片運算能力遠大於終端應用軟體所需,但機器學習的出現瞬間把這個落差給「闔上」了,突然間我們從毫不在乎硬體,又變得必須對硬體規格斤斤計較。

上面這個影片是史丹佛大學CS231n課程〈卷積神經網路在影像辨識上的應用〉第十五堂課的講座影片,主講者是最近剛取得電機暨計算機科學博士學位、明年即將在麻省理工開始任教的Song Han,講座的題目就是他的博士論文〈深度學習的高效率演算法和硬體〉

我強烈建議對於機器學習有興趣的人,不管是創業家或投資者——把這個講座影片看完,因為看完之後他們就能理解為什麼我說AI真正的主戰場在硬體

舉例來說,這整個講座使用的術語大約有三四成是機器學習和深度學習相關的,剩下的術語卻都是所有半導體產業的「老人」們再熟悉不過的:CPU、GPU、FLOPS、DDR 3、DDR 4、記憶體頻寬等。

事實上如果直接去閱讀Song Han的博士論文,老半導體人會看到兩個很親切的名字:論文的主要指導教授Bill Dally以及協同指導教授Mark Horowitz。其中Dally教授所著作的教科書〈Digital Systems Engineering〉幾乎所有電機本科生人手一本,而Horowitz教授則是我當年在半導體的研究領域「高速數位串流介面」的權威,如果把我當年閱讀過的他的論文疊在一起,就算沒辦法到頂天花板,最少也夠站在上面換燈泡。

Song Han在這兩位半導體老將的指導下完成這個博士論文,而且還受邀在CS231n〈卷積神經網路在影像辨識上的應用〉課程給講座的原因非常簡單:我們現在的CPU或者GPU、甚至於谷歌的TPU,都遠遠無法應付現有機器學習演算法「可能」的運算需求,因此軟硬體協同開發是必要的。

當我們說CPU、GPU乃至於TPU無法應付機器學習「可能」的運算需求,有兩個事情是我們所在乎的:運算速度以及耗能

一般的創業家和投資者比較能夠理解運算速度的重要性,畢竟整個深度學習的大躍進就是在於過去得花上幾週甚至幾個月才能完成的神經網路運算,被降到幾天甚至幾小時,但較少創業家或投資者能夠理解耗能的重要性,因為在過去十餘年的精實新創浪潮中,耗能這種東西百分之百是高通、鴻海、蘋果和三星這些人的問題。

機器學習中「耗能」是個大挑戰

但是在機器學習中「耗能」是一個很大的挑戰,甚至會成為效能的障礙。

機器學習的耗能主要來自兩個領域。

(一)矩陣乘法:所建置的神經網路越多層,每一層的神經元數越多,所需要運算的矩陣乘法就愈多。而半導體邏輯晶片的乘法是由NAND閘組合出來的,每一個電晶體的節點都會在電壓上下擺動的過程中消耗掉能量。考慮到矩陣乘法所需要用到的邏輯閘數量驚人,而且隨著神經元和係數的增加以指數成長,這部分運算的耗能也就指數成長。

(二)記憶體存取:類神經網路的運算需要大量而且高速的記憶體存取,主處理器(不論是CPU或者GPU)和記憶體模組通常是不同的晶片,因此存取發生在印刷電路板上,大量的能量會被耗損在對抗印刷電路板和晶片封裝的雜散容和電阻上。

耗能劇烈的第一個影響是電力成本。以去年擊敗李世乭的AlphaGo為例,該系統使用了1920個CPU和280個GPU,光下一場棋局的電費就高達三千美元,相較之下李世乭本人下這場局可能只需要一兩碗飯的熱量,「電」腦和「人」腦在耗能效率上仍然有天壤之別。

但是如果做多少運算就付多少電費就能解決的話,那還好說。但耗能的最大問題是:不管是哪一種耗能方式,都會轉換成廢熱,這些廢熱必須排出去,才能讓系統正常運轉。但系統耗能產生廢熱的速度根據運算量成指數成長,排除廢熱的速度卻受限於熱力學和流體力學有著線性的特質,因此我們不難想像在邁向泛用型人工智慧的路上,我們可能會先被「熵」這個躲也躲不掉的敵人給擋住,而不是演算法。

AI真正的主戰場在硬體-圖表.jpg
機器學習演算法與硬體的最佳化方式

在Song Han的講座中,他介紹了各種軟體演算法和硬體晶片結構的協同最佳化,以應付機器學習中training和inference兩個部分的耗能效率挑戰。但是不管是哪一種方式,不管改善多少運算效能和耗能效率,從工程的角度來看都是短期的、貼貼補補之類的解決方案,在摩爾定律多年前早已停止改善耗能的事實下,這些方案並沒辦法提供一個康莊大道通往真正的人工智慧經濟學終局

這也是作為風險資本投資者,我們致力於尋找著半導體邏輯運算以外的解決方案的原因。在之前專欄〈量子電腦春暖花開〉中我所介紹過的量子電腦是一種,而且理論上是最能夠應付無限延伸的未來中機器學習運算需求的一種。

但量子電腦的問題在於,目前不管是新創或者谷歌、IBM乃至於Intel等大廠的系統,都必須把溫度降到絕對零度附近,才能進行量子運算,地球上的降溫系統本身就是一個極為耗能的裝置,要等到綜合能源效率和建置成本到達可以和半導體晶片相比擬,恐怕還要不少的時光。

那麼有沒有其他的方式能夠比半導體有著高許多的耗能效率,但又沒有量子電腦那接近絕對零度的挑戰呢?答案也許存在自然界裡,就像是量子電腦採用物理特性進行運算,自然界也有許多物理現象包含了矩陣乘法的特質,也許我們可以找到一種運算方式,是將資料轉換成自然界的物理現象,在那裡完成運算,然後再匯回電腦系統中。這種運算統稱為「類比運算」(analog computing),其實是一門很古老的學問,遠在數位晶片高速成長的年代之前,幾乎所有的運算都是在類比世界中發生的。

作為投資者,我尋找著也等待著能夠善用類比運算來大幅加速機器學習的創業家,如果能夠投資到這樣的新創,我不介意錯過Blue Apron這樣的投資機會一百次!

本文由楊建銘授權轉載自其風傳媒專欄。

《數位時代》長期徵稿,針對時事科技議題,需要您的獨特觀點,歡迎各類專業人士來稿一起交流。投稿請寄edit@bnext.com.tw,文長至少800字,請附上個人100字內簡介,文章若採用將經編輯潤飾,如需改標會與您討論。

(觀點文章呈現多元意見,不代表《數位時代》的立場。)

往下滑看下一篇文章
用數據串起亞洲市場,Vpon 為品牌開啟跨境成長新航線
用數據串起亞洲市場,Vpon 為品牌開啟跨境成長新航線
2025.10.29 |

近年來,台灣零售、金融、服務等 B2C 產業,正面臨營運成長放緩的挑戰。一來本地市場規模趨於飽和,品牌間競爭日益激烈;二來會員結構逐漸高齡化,而年輕族群的忠誠度與黏著度又難以維繫。若想突破現況,企業勢必要尋找新的成長路徑——或是積極佈局海外市場,擴大營運版圖;或是吸引外國觀光客增加消費,創造跨境商機;又或者,精準洞察會員需求與偏好,重新打造客戶關係。

無論選擇哪條路,數據整合與 AI 應用都是推動轉型的重要關鍵。威朋大數據(Vpon)執行長篠原好孝正是看見了這樣的市場契機,提出「以數據串起亞洲市場」的核心願景,善用 Vpon 在數據、AI 與數位廣告上的整合能力和經驗,協助品牌描繪顧客行為軌跡,從而制定更個人化的商品推薦與行銷策略,同時亦能協助企業掌握跨境商機,加速日本品牌深耕台灣市場,也讓更多台灣企業能以數據為翼,飛向更廣闊的亞洲舞台。

三大特色構築 Vpon 數據競爭力:多維數據 × 廣告行銷 × 隱私保護

要實現「以數據串起亞洲市場」的願景,背後靠的不只是理想,更需要完整的跨境數據與嚴謹的治理機制,而這正是 Vpon 第三方數據庫的核心競爭力所在。

篠原好孝認為, Vpon 第三方數據庫具備三大特色。第一是提供多維且全方位的消費者洞察。除了透過 App 廣告聯播網收集數據, Vpon 亦以電子發票數據為基礎,並結合政府開放數據,擴大數據收集的維度,使數據庫涵蓋線下消費傾向、地理位置、族群輪廓、興趣偏好、App 使用行為等多元面向。透過多維度數據整合分析,為企業建立涵蓋「人、事、時、地、物」的完整市場視圖。

第二是整合廣告行銷專業。提供從數據收集、受眾分析到廣告投放的一條龍式解決方案,協助企業將數據洞察轉化為具體行銷策略,並精準觸及目標客群,提高廣告行銷的成效。

第三為重視隱私保護與數據合規。 Vpon 的數據收集範圍橫跨亞洲多個國家,考量到各國政府及企業客戶對個資保護的高度要求, Vpon 從一開始就堅持不收集使用者的姓名、電話或其他可識別個人身分的數據,數據庫內僅有匿名化的裝置使用行為數據,除此之外 Vpon 更通過 ISO 27001 資訊安全管理系統認證,從數據收集原則到營運流程全面保障消費者隱私安全及數據使用的合法合規。

Vpon 威朋
威朋大數據(Vpon)執行長 篠原好孝
圖/ 數位時代

以數據助攻國家戰略:從 Cool Japan 到 Cool Taiwan

憑藉在數據整合與分析上的深厚實力, Vpon 成功引起日本政府與企業的關注和採用,包括日本政府觀光局(JNTO)、關西觀光本部、大阪觀光局、AEON MALL 等,皆導入 Vpon 數據解決方案進行精準行銷。

日本政府在 2010 年開始推動 Cool Japan 戰略,在政策推進過程中,適逢 Vpon 進軍日本市場,與日本觀光局合作進行大數據分析,藉由 Vpon 數據解決方案整合與分析海外旅客的觀光旅遊數據,不僅吸引更多海外旅客造訪日本,也帶動日本百貨業者、日本特色食品與文化商品的海外銷售業績成長。近年來,日本觀光局更依據 Vpon 的數據洞察結果精準投放廣告,推動海外遊客到東京、大阪或京都等知名景點以外的地區旅遊,促進地方觀光與產業均衡發展。

Cool Japan 的成功經驗,讓 Vpon 看見跨境數據應用的巨大潛力。因此於 2024 年啟動 Cool Taiwan 計畫,此計畫的兩個重點,一是吸引外國觀光客來台旅遊,二是支援海外企業佈局台灣市場,持續以數據為核心,打造更緊密的亞洲經濟網絡。

篠原好孝舉例指出,若日本品牌要在台灣舖設實體通路,可以透過 Vpon 數據庫了解各個商圈的人流特性、消費習慣與潛在顧客的生活圈,進而判斷哪些地點最適合開設新店。「從店舖開設前的市場評估、選址決策,到開幕後的廣告行銷與宣傳活動,都能藉由 Vpon 的數據洞察持續優化。」篠原好孝強調。

更重要的是,這套數據應用機制不僅能「順向操作」,協助日本品牌登台拓點,也能「逆向操作」,協助台灣企業前進日本市場,同時提升入境(inbound)和境外(outbound)的收入。像佳音英語在佈局日本市場時,便借助 Vpon 的廣告與數據專業,在日本主要城市的戶外看板投放廣告,成功建立品牌知名度。另外,桃園觀光局也與 Vpon 合作,於日本實體展會進行宣傳與曝光,吸引日本民眾來台旅遊。

從第三方到第一方: Vpon 以 CCDP 助企業重掌數據主導權

除了以數據串聯亞洲市場, Vpon 更進一步透過可組合式顧客數據管理平台(Composable CDP;CCDP),推動企業「回到自身」,善用自有數據資產,打造內部數據的增值循環。

篠原好孝表示, Vpon CCDP 以 Google Analytics 4(GA4)技術為核心,協助企業收集網站與 App 的使用者行為數據,並整合品牌自有的會員數據庫。如此一來,企業就能更全面掌握顧客的數位行為軌跡,據此進行更精準的分眾分群,進一步去提升會員活躍度與終身價值。

目前包括中國信託、遠東商銀、ABC Mart 等零售與金融業者,皆已導入 Vpon CCDP 解決方案,在符合法規與隱私保護要求的前提下,有效整合分散的數據資產,並透過 AI 模型進行預測與建模,找出轉換率最高的潛在客群,或是進行個人化商品推薦、優化廣告投放策略等,實現更精準且高效的行銷決策。

展望未來, Vpon 將持續「以數據串起亞洲」的願景,深化在日本、台灣、香港等東亞市場的整合布局,並計畫於東京上市,以取得更多資源推動全球化發展,例如:拓展、越南、歐洲等東亞地區以外的新市場,打造連結亞洲、放眼世界的數據生態版圖。

登入數位時代會員

開啟專屬自己的主題內容,

每日推播重點文章

閱讀會員專屬文章

請先登入數位時代會員

看更多獨享內容

請先登入數位時代會員

開啟收藏文章功能,

請先登入數位時代會員

開啟訂閱文章分類功能,

請先登入數位時代會員

我還不是會員, 註冊去!
追蹤我們
一次搞懂Vibe Coding
© 2025 Business Next Media Corp. All Rights Reserved. 本網站內容未經允許,不得轉載。
106 台北市大安區光復南路102號9樓